((-4x^2)+7x+8)-((-5x^2)-x-7)=8

Simple and best practice solution for ((-4x^2)+7x+8)-((-5x^2)-x-7)=8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for ((-4x^2)+7x+8)-((-5x^2)-x-7)=8 equation:



((-4x^2)+7x+8)-((-5x^2)-x-7)=8
We move all terms to the left:
((-4x^2)+7x+8)-((-5x^2)-x-7)-(8)=0
We calculate terms in parentheses: +((-4x^2)+7x+8), so:
(-4x^2)+7x+8
We get rid of parentheses
-4x^2+7x+8
Back to the equation:
+(-4x^2+7x+8)
We calculate terms in parentheses: -((-5x^2)-x-7), so:
(-5x^2)-x-7
We add all the numbers together, and all the variables
(-5x^2)-1x-7
We get rid of parentheses
-5x^2-1x-7
Back to the equation:
-(-5x^2-1x-7)
We get rid of parentheses
-4x^2+5x^2+7x+1x+8+7-8=0
We add all the numbers together, and all the variables
x^2+8x+7=0
a = 1; b = 8; c = +7;
Δ = b2-4ac
Δ = 82-4·1·7
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{36}=6$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-6}{2*1}=\frac{-14}{2} =-7 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+6}{2*1}=\frac{-2}{2} =-1 $

See similar equations:

| ✓5x+10=✓6x+4 | | 2x=1+3/x | | 3x-4=58-32 | | -0,8x+0,2=0 | | 0,3x-0,3=0 | | 2-x=-21 | | x-24=-21 | | 3-4n=0 | | 3y+10.5)=2 | | 3000=x^2*π*6 | | d^2+4=-4d^2+10d+0,8 | | 2r=5=17 | | D2+4=-4d2+10d+0,8 | | x-6x-3x=-18-1 | | 9x^2+12+6=0 | | (x+30)+36+x=180 | | -10=x+8=15 | | 6x+3=15=12x-3 | | (D²+5D+4)y=0 | | 18+9m-2m√2=0 | | s=5-2.625 | | 18+9m-2m2=0 | | (X-100)+y=110 | | -x+5/7=1 | | 9x+900=4x^2 | | 1x-8/6=3 | | x²+20x+3=0 | | 16=45z | | 10=j-15 | | x2-2x-8=0, | | 4r^2=432 | | 3+3x-834923=382480932 |

Equations solver categories